| Metric | Value | Impact |
|---|---|---|
| Uncertainty Rate | 13.4% | Questions where bot was uncertain about answer quality |
| Question Volume | 2,666 | Total questions analyzed over 3-month period |
| Top Gap Area | Other | 229 uncertain questions in this area |
Apache Arrow Documentation Analysis
Kapa.ai Question Bot Analysis - June 23 to September 23, 2025
Summary
Key Findings
User improvement opportunities: Analysis of 2,666 user questions reveals significant opportunities to reduce support efforts and improve user experience through documentation improvements.
Areas to focus on: High-uncertainty topics with frequent questions represent the highest-value documentation updates.
Analysis Period: June 23 to September 23, 2025
Total Questions: 2,666 across 1,076 conversations
Daily Average: 29 questions per day
Documentation Gaps Analysis
High-Priority Topics by Uncertainty
Code
# Enhanced topic classification
topic_analysis <- data |>
mutate(
question_clean = str_to_lower(question),
primary_topic = case_when(
str_detect(question_clean, "parquet") ~ "Parquet Files",
str_detect(question_clean, "pandas|dataframe") ~ "Pandas Integration",
str_detect(question_clean, "schema|type|column") ~ "Schema & Data Types",
str_detect(question_clean, "memory|performance|speed|slow") ~ "Performance & Memory",
str_detect(question_clean, "install|error|import|setup") ~ "Installation & Setup",
str_detect(question_clean, "filter|select|query") ~ "Data Operations",
str_detect(question_clean, "write|save|export") ~ "Data Export",
str_detect(question_clean, "read|load|open") ~ "Data Loading",
str_detect(question_clean, "convert|cast|transform") ~ "Data Conversion",
str_detect(question_clean, "spark|dask|ray") ~ "Big Data Integration",
TRUE ~ "General/Other"
)
) |>
group_by(primary_topic) |>
summarise(
total_questions = n(),
uncertain_questions = sum(is_uncertain, na.rm = TRUE),
uncertainty_rate = mean(is_uncertain, na.rm = TRUE),
avg_question_length = mean(question_length, na.rm = TRUE),
.groups = "drop"
) |>
filter(total_questions >= 20) |> # Focus on topics with sufficient data
arrange(desc(uncertainty_rate))
# Create priority matrix visualization
priority_plot <- topic_analysis |>
ggplot(aes(x = total_questions, y = uncertainty_rate, size = uncertain_questions)) +
geom_point(alpha = 0.7, color = "steelblue") +
geom_text(aes(label = primary_topic), vjust = -0.5, hjust = 0.5, size = 3) +
scale_size_continuous(name = "Uncertain\nQuestions", range = c(3, 12)) +
scale_x_continuous(labels = scales::comma) +
scale_y_continuous(labels = scales::percent) +
labs(
title = "Documentation Gap Priority Matrix",
subtitle = "Topics in upper-right quadrant need immediate attention",
x = "Total Questions (Volume)",
y = "Uncertainty Rate (Quality Gap)",
caption = "Size indicates number of uncertain questions"
) +
theme_minimal() +
theme(
plot.title = element_text(size = 14, face = "bold")
)
ggplotly(priority_plot, tooltip = c("x", "y", "size", "label"))Temporal Patterns & Support Load
Code
# Daily question volume and uncertainty trends
daily_trends <- data |>
group_by(date) |>
summarise(
questions = n(),
uncertainty_rate = mean(is_uncertain, na.rm = TRUE),
avg_question_length = mean(question_length),
.groups = "drop"
)
# Weekly aggregation for cleaner visualization
weekly_trends <- data |>
group_by(week) |>
summarise(
questions = n(),
uncertainty_rate = mean(is_uncertain, na.rm = TRUE),
threads = n_distinct(thread_id),
.groups = "drop"
)
# Hourly patterns
hourly_patterns <- data |>
group_by(hour) |>
summarise(
questions = n(),
uncertainty_rate = mean(is_uncertain, na.rm = TRUE),
.groups = "drop"
)
# Create simpler temporal visualizations without secondary axes
p1 <- weekly_trends |>
ggplot(aes(x = week, y = questions)) +
geom_col(alpha = 0.7, fill = "steelblue") +
labs(
title = "Weekly Question Volume",
x = "Week",
y = "Questions per Week"
) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
p2 <- hourly_patterns |>
ggplot(aes(x = hour, y = questions)) +
geom_col(alpha = 0.7, fill = "darkgreen") +
scale_x_continuous(breaks = seq(0, 23, 4)) +
labs(
title = "Daily Usage Patterns (UTC Time)",
x = "Hour of Day (UTC)",
y = "Questions per Hour"
) +
theme_minimal()
# Uncertainty patterns
p3 <- weekly_trends |>
ggplot(aes(x = week, y = uncertainty_rate)) +
geom_line(color = "red", linewidth = 1.2, group = 1) +
geom_point(color = "red", size = 2) +
scale_y_continuous(labels = scales::percent) +
labs(
title = "Weekly Answer Uncertainty Rate",
x = "Week",
y = "Uncertainty Rate"
) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
# Combine plots
gridExtra::grid.arrange(p1, p3, p2, ncol = 1)Question Origin Analysis
Code
# Analyze which documentation pages generate most questions
origin_analysis <- data |>
filter(!is.na(question_origin_url), question_origin_url != "") |>
# Extract meaningful page names
mutate(
page_path = str_extract(question_origin_url, "(?<=docs/).*$"),
page_category = case_when(
str_detect(page_path, "python/generated") ~ "Python API Reference",
str_detect(page_path, "python/") ~ "Python User Guide",
str_detect(page_path, "cpp/") ~ "C++ Documentation",
str_detect(page_path, "r/") ~ "R Documentation",
str_detect(page_path, "format/") ~ "Format Specification",
TRUE ~ "General/Other"
),
specific_page = str_extract(page_path, "[^/]+\\.html$") |> str_remove("\\.html$")
) |>
count(page_category, specific_page, sort = TRUE) |>
group_by(page_category) |>
slice_head(n = 10) |> # Top 10 pages per category
ungroup()
# Visualize top question sources
origin_plot <- origin_analysis |>
group_by(page_category) |>
summarise(total_questions = sum(n), .groups = "drop") |>
ggplot(aes(x = reorder(page_category, total_questions), y = total_questions)) +
geom_col(fill = "steelblue", alpha = 0.8) +
geom_text(aes(label = scales::comma(total_questions)), hjust = -0.1) +
coord_flip() +
labs(
title = "Question Sources by Documentation Section",
x = "Documentation Section",
y = "Number of Questions"
) +
theme_minimal()
ggplotly(origin_plot)Recommendations
Priority Action Items
Based on the analysis, here are the highest-impact documentation improvements:
| Priority | Action | Expected Impact | Effort Level |
|---|---|---|---|
| 🔴 Critical | Create comprehensive Parquet troubleshooting guide or cheatsheet | Address uncertain questions | High |
| 🔴 Critical | Improve Pandas integration examples and cookbook | Address uncertain questions | High |
| 🟡 High | Add performance optimization best practices page | Reduce performance-related support tickets | Medium |
| 🟡 High | Enhance installation documentation with common error solutions | Improve new user onboarding success rate | Low |
| 🟢 Medium | Create cross-reference links between related API pages | Reduce navigation-related questions | Low |
Success Metrics to Track
After implementing these improvements, monitor:
- Uncertainty Rate: Target reduction from 13.4%
- Question Volume: Monitor reduction in high-frequency question topics
- Repeat Questions: Monitor reduction in duplicate/similar questions
Report generated on September 30, 2025 • Analysis covers Jun 23 - Sep 23, 2025